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Abstract—This article presents an adaptive learning solution for the selection of surrogate assisted training models. The
main issue is to improve classification of acoustic sources considering that few labeled data are available. In this proposal,
acoustic models are initially obtained from real signals. Surrogate models are then applied to assist the original training
procedure and achieve improved classification accuracy. Learned models are defined according to the discrimination
power among audio classes. Results show that the learning procedure leads to substantial accuracy gain in classification
experiments. The proposed solution is also evaluated as a pre-learning step for a dictionary learning algorithm. In this
scenario, the average accuracy is improved for a highly nonstationary and a stationary acoustic source.

Index Terms—Sensor signal processing, acoustic source classification, adaptive learning, index of nonstationarity, k-means singular
value decomposition (K-SVD), surrogates.

I. INTRODUCTION

The classification of acoustic sources has gained significant attrac-
tion in the signal processing research area [1], [2]. Applications of
environmental sound recognition include hearing aid, smart home,
robot navigation, and surveillance systems. Dictionary learning [1],
[3] and deep neural networks [2], [4], [5] are examples of techniques
that are commonly adopted for source classification. These solutions
generally require large amount of labeled training corpora. This sce-
nario leads to a key challenge for the classification system, i.e., how is
the sequence of relevant observations that represents the natural phe-
nomena under analysis selected? Generally, this sequence must en-
able dimension reduction, representation analysis, and discrimination
power to achieve accurate classification results. The learning process
becomes even more challenging for signal analysis and classification
when training and test datasets are nonstationary.

Recently, active learning (AL) and semi-supervised learning (SSL)
techniques have been applied to deal with large amount of unlabeled
instances that generally limits the classification accuracy [6], [7]. Both
AL and SSL aim to achieve higher classification rates by selecting part
of the unlabeled data to train the acoustic models. AL actively detects
the most informative part of the unlabeled data, which is then manually
labeled through a human annotator. On the other hand, SSL enables
the automatic annotation of unlabeled data by using models trained
on smaller sets of the labeled part of the database. The combination
of AL and SSL has also been investigated to improve classification
results with reduced human annotation efforts [6], [8].

This letter introduces an adaptive learning solution for sound classi-
fication considering that few labeled samples are available for training.
Different from AL, the proposed technique requires no human effort to
manually annotate unlabeled data. Instead, surrogate models replace

Corresponding author: R. Coelho (e-mail: coelho@ime.eb.br).
Associate Editor: F. Falcone.
Digital Object Identifier 10.1109/LSENS.2019.2917661

the original acoustic models to improve the classification accuracy.
The adoption of surrogate models is motivated by the nonstationary
nature of real acoustic signals. In this article, surrogates consider the
Kurtosis ratio (K ), the power spectral density (PSD), and the index
of nonstationarity (INS) [9] of labeled signals. The most informative
models are automatically selected to better represent and distinguish
the acoustic sources. Furthermore, models may be updated whenever
a new set of signals is available for tests.

Classification experiments are conducted considering eight acoustic
sources with different nonstationarity degrees for two different sce-
narios. In the first one, an adaptive learning is applied to the classical
classification procedure based on mel-frequency cepstral coefficients
(MFCC) and Gaussian mixture models (GMM). The proposed solu-
tion detects the most discriminative surrogates to adapt the acous-
tic models and lead to the best classification rates. Results show an
improvement of more than 11 percentage points (p.p.) in the aver-
age classification accuracy. Thus, time-varying properties adopted in
the surrogate generation (K , PSD, and INS) prove to be essential to
guarantee improved sources discrimination. In a second scenario, the
k-means singular value decomposition (K-SVD) [10] is applied over
the original MFCC matrix to obtain a set of sparse vectors, which are
then used to train the GMM of the K-SVD. The proposed approach is
defined as a pre-learning strategy for the K-SVD dictionary learning
to increase classification rates. This pre-learning step leads to almost
7 p.p. gain in the average accuracy.

II. ADAPTIVE LEARNING APPROACH

The block diagram in Fig. 1 illustrates the proposed adaptive learn-
ing solution. The main goal is to select an acoustic model λc that
better distinguishes a target class c from the others. For that purpose,
let

{
�0

c | c = 1, . . . , C
}

denote the set of training acoustic signals
available for C different classes. For each c ∈ {1, 2, . . . , C}, a feature
matrix Y0

c is extracted from �0
c and is then used to obtain an initial

acoustic model λ0
c . The proposed solution begins with the genera-
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Fig. 1. Block diagram of the proposed adaptive learning.

Fig. 2. Illustration of the PSD peak detection. Peaks correspond to
frequency bins where the PSD value exceeds the selection threshold.

tion of M nonstationary surrogate signals
{
�m

c |m = 1, . . . , M
}

using
the statistics of training samples. Initially, these synthetic sequences
are generated considering the training samples statistics. Then, a set
of matrices

{
Ym

c |m = 1, . . . , M
}

is obtained from these surrogates,
leading to a new set of acoustic models

{
λm

c |m = 1, . . . , M
}
. They

are finally compared to the original model λ0
c to select the most infor-

mative acoustic model λc. In a posterior step, surrogates may also be
generated applying the statistics of acoustic signals �1

c, �
2
c, . . . , �

S
c

available for tests. Thus, final models are derived from this new aug-
mented dataset.

A. Surrogate Generation for Learning

Consider an input reference signal {x(t)} divided into Q short-time
frames {xq (t)}, q = 0, 1, . . . , Q − 1, with fixed time duration and
50% overlapping. The generation is performed in a frame-by-frame
basis, and the algorithm for each frame q is described in three steps.
First, a random sequence of uncorrelated samples {yq (t)} is generated
with amplitude distribution defined by the Kurtosis ratio of {xq (t)}
according to the method introduced in [11]. Next, coefficients of a
finite impulse response (FIR) filter are computed on the basis of the
target PSD [12]–[14]. In the third step, these uncorrelated samples are
filtered in the time domain to obtain artificial samples {ȳq (t)}. Finally,
samples of each short-time segment are concatenated to form a single
surrogate data sequence {y(t)}.

In this article, filter coefficients computed according to [13] are
modified to reproduce peaks that may appear in the PSD of the target
real signal. PSD peaks are detected on the basis of a moving average
criterion as shown in Fig. 2. In this example, the PSD is obtained from
a 32 ms segment of a Train1 real acoustic signal. Identified peaks (refer
to A1, A2) correspond to frequency bins whose PSD value exceeds the
threshold, which is here defined as the sum of the moving average
with the standard deviation of L neighboring points multiplied by a
factor F . In Fig. 2, the threshold corresponds to L = 10 and F = 1.
If a total of P peaks are found at frequency bins f1, f2, . . . , fP , new
filter coefficients {h′(t)} are obtained by the summation of N initial
filter coefficients, {h(t)} with a set of sine waves that correspond to

1Available at http://www.freesfx.co.uk

Fig. 3. INS and spectrograms of (a) Dogs acoustic signal and (b)–(c)
two surrogates generated with different values of L and F .

PSD peaks, i.e.,

h′(t) = h(t)+
P∑

p=1

Ap sin(2π f pt) , 1 ≤ t ≤ N (1)

where Ap amplitudes are given by the difference between PSD peaks
and the moving average.

In summary, computation of filter coefficients {h′(t)} is the starting
point to obtain a sample sequence {ȳq (t)} with Kurtosis and PSD
defined by {xq (t)}. Then, sequence {yq (t)} is generated with Kurtosis
ratio Ky,q according to [11]. Filtered samples ȳq (t) are obtained by
the convolution ȳq (t) = yq (t) ∗ h′(t). In this case, synthetic samples
reproduce the decaying rate βq and the most prominent peaks present at
the PSD of {xq (t)}. Finally, the Q short-time segments are overlapped
and added to form the surrogate signal y(t).

If the INS estimated from the surrogate sample sequence
(
INS

)

differs from the target value (INStar), amplitudes Ap are adjusted by
Ap ← r 2 Ap , where r = INStar/INS. The generation method is then
applied to obtain a new sample sequence. This procedure is repeated
until the INS estimated from y(t) is considerably close to INStar, which
corresponds to r ≈ 1. In this article, the generation stops when r lies
in the range [0.85, 1.15].

Surrogate signals obtained with the proposed method are able to
reproduce the nonstationarity behavior and the time-frequency char-
acteristics of the target signal. As an example, surrogates are generated
to represent a Dogs1 real nonstationary acoustic signal. Fig. 3 depicts
INS values and spectrograms from the real signal and two surrogates.
These surrogates were obtained with different parameters: L = 16
and F = 1.6 for Fig. 3(b), and L = 64 and F = 2.0 for Fig. 3(c). INS
values are calculated considering different observation scales Th/T ,
where Th is the length adopted in the short-time spectral analysis, and
T = 5 s is the total duration. Green dashed lines refer to the stationar-
ity threshold γ ≈ 1. Note that the INS of the real signal and surrogates
are considerably similar. Moreover, the spectrogram energy of both
surrogates are mainly concentrated at the same regions of the real sig-
nal. The choice of parameter values clearly leads to different surrogate
spectrograms. In this example, the surrogate signal of Fig. 3(c) is the
best candidate to achieve improved accuracy in the classification task.

B. Adaptive Learning for Sound Classification

After the generation of nonstationary surrogates, the adaptive
learning solution is applied to determine which acoustic model λm

c ,
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m = 1, . . . , M , better represents the target class c ∈ {1, . . . , C}. Given
a set of test signals, the classification is initially conducted with origi-
nal models λc = λ0

c obtained from training signals. Let R represent the
percentage of correctly recognized trials obtained in this classification
procedure. In the proposed solution, a feature matrix Ym

c is extracted
from each surrogate �m

c (see Fig. 1). These matrices are then used to
obtain a set of acoustic models

{
λm

c | c = 1, . . . , C ; m = 1 . . . , M
}
.

Then, for each class c ∈ {1, 2, . . . , C}, consider Rm
c the classification

accuracy obtained by individually replacing λc by a new model λm
c

(1 ≤ m ≤ M). If any of these models lead to an increase in the recog-
nition rate R, it is selected as the most informative acoustic model λc

according to the maximum classification accuracy, i.e.,

λc ← λm̂
c , where m̂ = arg max

1≤m≤M
Rm

c . (2)

After the selection of each model λc, the sound classification pro-
cedure may be repeated considering all adapted models. The proposed
learning solution is also adaptive in the sense that a new set of sur-
rogate signals can be generated whenever a new dataset is available.
Then, acoustic models may be selected from this augmented dataset
according to (2) in order to achieve a higher classification accuracy.

III. PRE-LEARNING SOLUTION FOR K-SVD

The adaptive learning with nonstationary surrogates is also pro-
posed as a pre-learning strategy for the K-SVD. To this end, acoustic
source classification is considered with sparse coding based feature
[1]. This approach combines the K-SVD dictionary learning algo-
rithm [10] and the orthogonal matching pursuit (OMP). Given a ma-
trix of interest Y, the sparse coding procedure aims to better express
each column of Y as a linear combination of T0 atoms of a dictio-
nary D. Therefore, the K-SVD objective function can be written as
minD,X{‖Y− DX‖2

F } subjected to ‖xi‖0 ≤ T0 ∀i , where xi is the i th
column of X. The K-SVD iteratively solves this minimization problem
by updating each column of D and its corresponding relevant coeffi-
cients on X through a generalization of the k-means clustering method.
In this letter, a dictionary Dc is generated from each training feature
matrix. The sparse coefficients are obtained through the OMP for
each training and test feature matrix. All OMP reconstruction coeffi-
cients are concatenated to form the sparse feature. For the pre-learning
strategy, the sparse features extraction is applied over the matrices{
Ym

c | c = 1, . . . , C, m = 1, . . . , M
}

obtained after surrogate genera-
tion. The idea is to select and add the most relevant information to the
sparse feature vectors and, thus, increase class discrimination.

IV. EXPERIMENTS AND RESULTS

Multiclass classification experiments are conducted with acoustic
signals of eight sources obtained from the freeSFX1 database: Chain-
saw, Dogs, Fan, Rain, Shower, Siren, Subway, and Waterfall.2 Three
segments sampled at 22 050 Hz with time duration of 5 s are selected
for each source, two for training (one for acoustic models generation
and one for surrogate sequences selection) and one for tests. According
to the maximum INS value (INSmax) estimated from training signals,
these acoustic sources are defined as Chainsaw (INSmax = 130) and
Siren (INSmax = 149) are highly nonstationary; Dogs (INSmax = 37)
and Subway (INSmax = 40) are nonstationary, whereas Fan, Rain,
Shower, and Waterfall are stationary, i.e., INS values are close to the
stationarity threshold.

In the first scenario of the classification of acoustic sources, feature
matrices are composed of 12-dimensional MFCC vectors extracted

2Acoustic signals are available at lasp.ime.eb.br.

Fig. 4. Average classification accuracies obtained with different num-
ber of surrogates.

Table 1. Classification Accuracies (%) Obtained in the MFCC + GMM
Scenario Without Adaptive Learning.

Table 2. Classification Accuracies (%) Obtained in the MFCC + GMM
Scenario With Adaptive Learning.

from frames of 20 ms with 50% overlapping. During the training
phase, each 12× 500 matrix is used to obtain a GMM with 5 compo-
nents. Each feature vector extracted from the remaining signals is then
classified according to the maximum likelihood criterion. The adaptive
learning is implemented with 2, 4, 6, 12, 18, and 24 surrogates consid-
ering short-time frames of 512 samples. In this scenario, acoustic mod-
els of four sources are improved with the surrogates: Chainsaw, Dogs,
Fan, and Shower. As an example, the surrogate depicted in Fig. 3(c)
leads to the most discriminative acoustic model for the Dogs source.

Classification accuracies obtained from different values of M are
illustrated in Fig. 4. These results consider a total of 4000 trials. It
also includes the result achieved without the adaptive learning, which
corresponds to M = 0. The total number of surrogates M is achieved
by setting the parameters L and F according to the table in the right
of Fig. 4. Note that the classification accuracy is improved in 12.5 p.p.
with only six surrogates, from 64.8% to 77.3%. The adaptive learn-
ing with M = 12 attains an average accuracy of 81.7%, i.e., 16.9 p.p.
higher than the classification without learning. Furthermore, the adop-
tion of more than 12 surrogates does not lead to higher classification
rates. Thus, subsequent experiments are performed with test signals
considering M = 12 surrogates.

Tables 1 and 2 present confusion matrices obtained without and with
the adaptive learning technique, respectively. Boldface values refer
to the accuracy of each source. It can be noticed that the proposed
approach increases the classification rates for five acoustic sources.
For the highly nonstationary Chainsaw, the classification accuracy is
improved from 5.8% to 95.2%. An interesting gain of 41.8 p.p. is also
found for the stationary Fan source. The assisted surrogate generation
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Fig. 5. ROC curves and corresponding AUC in the MFCC + GMM
scenario (a) without and (b) with the adaptive learning.

Fig. 6. Classification accuracy obtained with and without pre-learning
for different acoustic sources.

is able to represent any index of nonstationarity. Thus, the adaptive
learning may be applied to any acoustic source, including those with
INS ≈ 1, i.e., stationary signals. The average accuracy is improved in
11.7 p.p., from 63.6% to 75.3%.

Receiver operator characteristic (ROC) curves and the area under
the curve (AUC) are adopted as complementary evaluation measures
for the confusion matrices (see Tables 1 and 2). Fig. 5 illustrates
these plots computed for each acoustic source with and without the
adaptive learning technique. Note that the adaptive learning solution
improves the AUC values for five noise sources. Particularly for the
Chainsaw source, AUC is improved from 0.74 to 0.99. This reinforces
the substantial classification accuracy improvement presented in the
confusion matrices for the Chainsaw source.

In the second scenario, the adaptive learning is adopted as a pre-
learning step for K-SVD. It means that the K-SVD algorithm is used
to generate sparse feature vectors from MFCC matrices extracted from
the surrogates during the training phase. For each acoustic source, the
K-SVD is set to 80 iterations in order to learn a 12× 12 dictionary Dc.
The OMP was used for the sparse coding solution with T0 = 3 nonzero
elements. Experiments consider a total of 200 random initializations
for the K-SVD algorithm. The dictionary Dc adopted for the acoustic
source classification is the one that achieves the lowest reconstruc-
tion error. Each training and test MFCC matrix is then represented
by a linear combination of each dictionary Dc using the OMP with
T0 = 6. The sparse feature vector is composed by concatenating 96
(8× 12) reconstruction coefficients obtained with OMP. In terms of
computational costs, the generation of M = 12 surrogates shows sim-
ilar values to the K-SVD and OMP algorithms. Thus, the combination
of the preprocessing with the K-SVD and OMP consumes about twice
the processing time of the K-SVD and OMP algorithms without the
preprocessing step.

The classification results obtained without and with the pre-learning
strategy are shown in Fig. 6. The pre-learning is implemented consid-
ering the same MFCC matrices that lead to the classification results
in Table 2. Note that the use of nonstationary surrogates leads to in-
teresting accuracy gain for the Chainsaw (highly nonstationary) and
Fan (stationary) sources, i.e., 34.8 and 41.8 p.p., respectively. Fur-
thermore, a 11.4 p.p. improvement is achieved for the classification

of the Subway source. The proposed pre-learning procedure also at-
tains an average accuracy of 62.4%, which is 6.9 p.p. higher than that
of the K-SVD without pre-learning. This result validates the use of
nonstationary surrogates for dictionary learning based classification.

V. CONCLUSION

This article introduced an adaptive learning approach based on
surrogate assisted training models. The adaptive learning procedure
determines the acoustic models that better discriminate audio classes.
Experimental results show that the proposed solution improves dis-
crimination power, i.e., substantial gain is achieved in the average
classification accuracy considering MFCC and GMM. It means that
Kurtosis, PSD and INS are essential properties of the real signals to
increase classification rates. The proposed method also contributes
as a pre-learning strategy for the K-SVD dictionary learning. Results
demonstrate that the surrogate generation enables good representation
of different nonstationary acoustic signals. Moreover, the selection of
acoustic models from surrogates proves that the representation anal-
ysis and discrimination power are achieved together with dimension
reduction.
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